图像拼接算法原理 2

版权声明:原创作品,欢迎转载,但转载请以超链接形式注明文章来源(planckscale.info)、作者信息和本声明,否则将追究法律责任。

2. 曲面投影

Homography_Near90Degreee

图6. 近90^{\circ}时产生越来越大的畸变

通常简单的图像拼接技术,就是如上节所示的基本原理,找出一张大概处于中间位置的图像,然后利用单应性变换把其他图像变换到该中心图像的视角下,再做一些后续的曝光补偿、图像融合等处理即可。但是这一技术有相当大的局限性,最简单的例子,不能直接用它拼出360^{\circ}的全景图。

为什么呢?让我们来考虑图6中所示情形。可见,三条光线与P^{\prime}相交的三点,原本是近乎等间距均匀分布的,而当它们映射到P平面上后,间距却产生了巨大的差异。表现在图像上,P^{\prime}上的图像变换到P上后,会产生相当大的拉伸畸变。当图中两相机的投影平面越来越趋于垂直时,这个畸变越来越大,以至于P^{\prime}上普通的一点可能会被映射到P平面的无穷远点。这时,这种简单的单应性拼接方案就彻底崩溃了。

Homography_Warp

图7. 曲面投影解决大视场角下的投影畸变问题

怎样得到更宽视场角下的拼接图?解决方法很简单。以上所出现的这种畸变源自于我们将点投影到一个平面上,设想将P掰弯,或者直接弯曲成一个圆柱面,成为图7所示的样子,那原本被投影到P平面无穷远处的点就被拉回来了。我们在圆柱面上选取一个足够均匀的坐标系,把坐标对应到像素坐标,就可以得到一个全景图了。

当然,针对不同的应用,我们还可以选取不同的投影曲面,比如选取球面用于360^{\circ} * 180^{\circ}的球面全景图,甚至也可以选择一个立方体作为投影曲面。

 

3. 后续处理

至此全景拼接的几何原理就大致说完了,虽然我们还没有给出数学表达。为了先居高临下的了解整个拼接流程,我们不妨把后续处理的梗概也在此一说。

实际应用中为了创建出完美的全景图,有很多的问题需要考虑。最典型的问题有两个,一个是如何解决不同照片中曝光不一致的问题;一个是如何在拼接缝处完美平滑的融合两张图像的问题。

第一个由曝光补偿算法来解决,大体思路是估计两张图间的曝光差异,然后进行补偿。此处不多说。

第二个问题也有众多解决方案,最为著名的大概就属Multi-Band融合算法。该算法虽然八十年代就已提出,但其效果至今仍让人赞叹。在通常图像间失配程度不大的情况下,Multi-Band可以达到肉眼几乎不可分辨的融合效果。其原理也不复杂,下面略微一提。

融合两张图像,最直接的方案是在两张图像的重合区域用一个平滑渐变的权重对二者加权叠加。该方法的效果并不理想,关键原因是我们无法兼顾拼缝附近的局域细节和大尺度上两张图片的宏观特征(如光照)。当我们希望局域细节能够完好拼接时,需要用较小的平滑渐变区;而当我们希望要宏观上平滑过渡时,又想要较大的渐变区域。这二者似乎不可调和。

但事实上并非如此。Multi-Band的成功之处就是在于它同时兼顾两种需求,当融合宏观特征时,采用一个大的平滑渐变区;融合局域细节时,则采用小的平滑渐变区。那如何才能把这两种情况分开处理呢?很简单,把图像分解为不同频带的分量之加和,图像的宏观特征在它的低频分量图里,而局域特征在高频分量图里。

所以,Multi-Band算法的过程大致就是:把图像按照频率高低展开成一个金字塔,然后高低频分量各自按照不同的方式平滑加权并叠加,最后把各频带分量重新加和,得到最终的融合结果。

该算法融合效果虽好,但对于计算量要求较大,它需要创建多座金字塔并对金字塔进行各种运算,图像像素较高时,在CPU上要达到实时基本无望。当然,GPU上情况就不一样了,我们自己就实现了实时的Multi-Band融合算法,效果很好。

 

这一系列文章主要以拼接的几何原理为主。下一节开始用数学建模前两节所述的投影模型。

(未完待续)

图像拼接算法原理 2》有1个想法

  1. Pingback引用通告: 360Heros—-全景视频制作 | Planck Scale

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

*